Results show that the composite improves the first cycle columbic efficiency and cycle life of anode materials effectively.
结果表明,该碳纳米管电剂可有效提高电极材料的首次库仑效率和循环寿命。
Results show that the composite improves the first cycle columbic efficiency and cycle life of anode materials effectively.
结果表明,该碳纳米管电剂可有效提高电极材料的首次库仑效率和循环寿命。
Interpolymer complexes can be formed by two polymers through hydrogen bond or electrostatic force include hydrogen complexes and polyelectrolyte complexes.
两种大分子可以利氢键或者库仑力形成高分子
物,根据不同的作
力性质可分
氢键
物(氢键作
)和聚电解质
物(静电力)。
In this paper,analytical expressions for double step potential chronoamperometry and chronocoulometry with simple reversible electrode reaction at microring electrodes are derived.
推了微环电极上双电位阶跃计时电流和计时库仑法可逆波理论方程
,并得到了解析表达
。
Using the Relativity Theory, Ampere s law can be derived from the Colulmb s law, and the induced-electromotance and dynamic-electromotance may be alternated each other.
相对论理论,安培定律可通过库仑定理推出,感生电动势和动生电动势可以相互转化,在此意义上磁学基本定律可进一步统一到静电学定律之中。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Results show that the composite improves the first cycle columbic efficiency and cycle life of anode materials effectively.
结果表明,该碳纳米管复合电剂可有效提高电极材料的首次
效率和循环寿命。
Interpolymer complexes can be formed by two polymers through hydrogen bond or electrostatic force include hydrogen complexes and polyelectrolyte complexes.
两种大分子可以利用氢键或者形成高分子复合物,根据不同的作用
性质可分
氢键复合物(氢键作用)和聚电解质复合物(静电
)。
In this paper,analytical expressions for double step potential chronoamperometry and chronocoulometry with simple reversible electrode reaction at microring electrodes are derived.
微环电极上双电位阶跃计时电流和计时
法可逆波理论方程式,并得到
解析表达式。
Using the Relativity Theory, Ampere s law can be derived from the Colulmb s law, and the induced-electromotance and dynamic-electromotance may be alternated each other.
应用相对论理论,安培定律可通过定理
出,感生电动势和动生电动势可以相互转化,在此意义上磁学基本定律可进一步统一到静电学定律之中。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Results show that the composite improves the first cycle columbic efficiency and cycle life of anode materials effectively.
结果表明,该碳纳米管复合电剂可有效提高电极材料的首次库
效率和循环寿命。
Interpolymer complexes can be formed by two polymers through hydrogen bond or electrostatic force include hydrogen complexes and polyelectrolyte complexes.
两种大分子可以利用氢键或者库成高分子复合物,根据不同的作用
性质可分
氢键复合物(氢键作用)和聚电解质复合物(静电
)。
In this paper,analytical expressions for double step potential chronoamperometry and chronocoulometry with simple reversible electrode reaction at microring electrodes are derived.
了微环电极上双电位阶跃计时电流和计时库
法可逆波理论方程式,并得到了解析表达式。
Using the Relativity Theory, Ampere s law can be derived from the Colulmb s law, and the induced-electromotance and dynamic-electromotance may be alternated each other.
应用相对论理论,安培定律可通过库定理
出,感生电动势和动生电动势可以相互转化,在此意义上磁学基本定律可进一步统一到静电学定律之中。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Results show that the composite improves the first cycle columbic efficiency and cycle life of anode materials effectively.
结果表明,该碳纳合导电剂可有效提高电极材料的首次库仑效率和循环寿命。
Interpolymer complexes can be formed by two polymers through hydrogen bond or electrostatic force include hydrogen complexes and polyelectrolyte complexes.
两种大分子可以利氢键或者库仑力形成高分子
合物,根据不同的作
力性质可分
氢键
合物(氢键作
)和聚电解质
合物(静电力)。
In this paper,analytical expressions for double step potential chronoamperometry and chronocoulometry with simple reversible electrode reaction at microring electrodes are derived.
推导了微环电极上双电位阶跃计时电流和计时库仑法可逆波理论方程式,并得到了解析表达式。
Using the Relativity Theory, Ampere s law can be derived from the Colulmb s law, and the induced-electromotance and dynamic-electromotance may be alternated each other.
应论理论,安培定律可通过库仑定理推出,感生电动势和动生电动势可以
互转化,在此意义上磁学基本定律可进一步统一到静电学定律之中。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Results show that the composite improves the first cycle columbic efficiency and cycle life of anode materials effectively.
结果表明,该碳纳米管复合导电剂有
提高电极材料的首次库仑
率和循环寿命。
Interpolymer complexes can be formed by two polymers through hydrogen bond or electrostatic force include hydrogen complexes and polyelectrolyte complexes.
两种大分子以利用氢键或者库仑力形成高分子复合物,根据不同的作用力性质
分
氢键复合物(氢键作用)和聚电
质复合物(静电力)。
In this paper,analytical expressions for double step potential chronoamperometry and chronocoulometry with simple reversible electrode reaction at microring electrodes are derived.
推导微环电极上双电位阶跃计时电流和计时库仑法
逆波理论方程式,并得到
表达式。
Using the Relativity Theory, Ampere s law can be derived from the Colulmb s law, and the induced-electromotance and dynamic-electromotance may be alternated each other.
应用相对论理论,安培定律通过库仑定理推出,感生电动势和动生电动势
以相互转化,在此意义上磁学基本定律
进一步统一到静电学定律之中。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Results show that the composite improves the first cycle columbic efficiency and cycle life of anode materials effectively.
结果表明,该碳纳米管复合导电剂可有效提高电极材料的首次库仑效率和循环寿命。
Interpolymer complexes can be formed by two polymers through hydrogen bond or electrostatic force include hydrogen complexes and polyelectrolyte complexes.
两种可以利用氢键或者库仑力形成高
复合物,根据不同的作用力性质可
氢键复合物(氢键作用)和聚电解质复合物(静电力)。
In this paper,analytical expressions for double step potential chronoamperometry and chronocoulometry with simple reversible electrode reaction at microring electrodes are derived.
推导了微环电极上双电位时电流和
时库仑法可逆波理论方程式,并得到了解析表达式。
Using the Relativity Theory, Ampere s law can be derived from the Colulmb s law, and the induced-electromotance and dynamic-electromotance may be alternated each other.
应用相对论理论,安培定律可通过库仑定理推出,感生电动势和动生电动势可以相互转化,在此意义上磁学基本定律可进一步统一到静电学定律之中。
声明:以上例句、词性类均由互联网资源自动生成,部
未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Results show that the composite improves the first cycle columbic efficiency and cycle life of anode materials effectively.
结果表明,该碳复合导电剂可有效提高电极材料的首次库仑效率和循环寿命。
Interpolymer complexes can be formed by two polymers through hydrogen bond or electrostatic force include hydrogen complexes and polyelectrolyte complexes.
两种大分子可以利用氢键或者库仑力形成高分子复合物,根据不同的作用力性质可分氢键复合物(氢键作用)和聚电解质复合物(静电力)。
In this paper,analytical expressions for double step potential chronoamperometry and chronocoulometry with simple reversible electrode reaction at microring electrodes are derived.
推导了微环电极上双电位阶跃计时电流和计时库仑法可逆波理方程式,并得到了解析表达式。
Using the Relativity Theory, Ampere s law can be derived from the Colulmb s law, and the induced-electromotance and dynamic-electromotance may be alternated each other.
应用理
,安培定律可通过库仑定理推出,感生电动势和动生电动势可以
互转化,在此意义上磁学基本定律可进一步统一到静电学定律之中。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Results show that the composite improves the first cycle columbic efficiency and cycle life of anode materials effectively.
结果明,该碳纳米管复合导电
有效提高电极材料的首次库仑效率和循环寿命。
Interpolymer complexes can be formed by two polymers through hydrogen bond or electrostatic force include hydrogen complexes and polyelectrolyte complexes.
两种大分子以利用氢键或者库仑力形成高分子复合物,根据不同的作用力性质
分
氢键复合物(氢键作用)和聚电
质复合物(静电力)。
In this paper,analytical expressions for double step potential chronoamperometry and chronocoulometry with simple reversible electrode reaction at microring electrodes are derived.
推导了微环电极上双电位阶跃计时电流和计时库仑法逆波理论方程式,并得到了
达式。
Using the Relativity Theory, Ampere s law can be derived from the Colulmb s law, and the induced-electromotance and dynamic-electromotance may be alternated each other.
应用相对论理论,安培定律通过库仑定理推出,感生电动势和动生电动势
以相互转化,在此意义上磁学基本定律
进一步统一到静电学定律之中。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其达内容亦不代
本软件的观点;若发现问题,欢迎向我们指正。
Results show that the composite improves the first cycle columbic efficiency and cycle life of anode materials effectively.
表明,该碳纳米管复合导电剂
有效提高电极材料的首次
仑效率和循环寿命。
Interpolymer complexes can be formed by two polymers through hydrogen bond or electrostatic force include hydrogen complexes and polyelectrolyte complexes.
两种大分子以利用氢键或者
仑力形成高分子复合物,根据不同的作用力性质
分
氢键复合物(氢键作用)和聚电解质复合物(静电力)。
In this paper,analytical expressions for double step potential chronoamperometry and chronocoulometry with simple reversible electrode reaction at microring electrodes are derived.
推导了微环电极上双电位阶跃计时电流和计时仑法
逆波理论方程式,并得到了解析表达式。
Using the Relativity Theory, Ampere s law can be derived from the Colulmb s law, and the induced-electromotance and dynamic-electromotance may be alternated each other.
应用相对论理论,安培通过
仑
理推出,感生电动势和动生电动势
以相互转化,在此意义上磁学基本
进一步统一到静电学
之中。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。